
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 28. October 2019
Markus Püschel, David Steurer
Johannes Lengler, Gleb Novikov, Chris Wendler

Algorithms & Data Structures Exercise sheet 6 HS 19

Exercise Class (Room & TA):
Submi�ed by:
Peer Feedback by:
Points:

Submission: On Monday, 04 November 2019, hand in your solution to your TA before the exercise
class starts. Exercises that are marked by ∗ are challenge exercises. �ey do not count towards bonus
points.

Exercise 6.1 Heapsort (1 point).

Given the array [A, L, G, O, R, I, T, H, M], we want to sort it in ascending alphabetical order using
Heapsort.

a) From the lecture and the script you know a method to construct a heap in linear time. Draw the
resulting max binary heap if this method is applied to the above array.

b) Sort the above array in ascending alphabetical order with heapsort, beginning with the heap that
you obtained in a). Draw the array a�er each intermediate step in which a key is moved to its �nal
position.

Exercise 6.2 Sorting algorithms (This exercise is from January 2019 exam) .

Below you see four sequences of snapshots, each obtained during the execution of one of the following
algorithms: InsertionSort, SelectionSort, QuickSort, MergeSort, and BubbleSort.
For each sequence, write down the corresponding algorithm.

3 8 5 4 1 2 7 6

3 5 4 1 2 7 6 8

3 4 1 2 5 6 7 8

3 8 5 4 1 2 7 6

3 5 8 4 1 2 7 6

3 4 5 8 1 2 7 6



3 8 5 4 1 2 7 6

3 8 4 5 1 2 6 7

3 4 5 8 1 2 6 7

3 8 5 4 1 2 7 6

3 6 5 4 1 2 7 8

3 2 5 4 1 6 7 8

Exercise 6.3 Finding nouns (2 points).

Assume that you are working at the department of linguistics. You have several �les on your computer
that contain nouns of a very rare language (words in this language are wri�en using standard English
alphabet). Initially, the nouns were separated by spaces, but due to some technical error in your text
editor, all the spaces disappeared. For example, if the original �le contained

kuzdra bokr gostak doshes

then the corrupted �le contains
kuzdrabokrgostakdoshes

Fortunately, you can call an expert in this language and ask him whether a string is a noun of this
language or not. Your goal is to recover original sequences of nouns from corrupted �les.

a) Provide a dynamic programming algorithm that takes as input a content of some �le S (which is
a string of English le�ers) and determines whether one can split S by spaces to get a sequence of
nouns of the target language. Assume that you call an expert using some function f(x) that returns
true if a string x is a noun of a target language and false otherwise. Number of calls of f should
be O(n2) where n is a length of S (i.e. n is the number of le�ers in S). Your DP table should be
one-dimentional and number of entries should be linear, i.e. O(n).

For example, if all the nouns of the language are {bokr, bokrgos, doshes, drabok, gostak, kuz, kuzdra,
takdos}, (that is, function f outputs true only at such strings), then your algorithm should output
true on input “kuzdrabokrgostakdoshes” and false on input “kuztakdoshes”.

Address the following aspects in your solution:

1) De�nition of the DP table: What is the meaning of each entry?

2) Computation of an entry: How can an entry be computed from the values of other entries?
Specify the base cases, i.e., the entries that do not depend on others.

3) Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

4) Extracting the solution: How can the �nal solution be extracted once the table has been �lled?

Speci�cally, you can use the following scheme:

Meaning of a table entry (in words):

DP [i]:

2



Computation of an entry (initialization and recursion):

Order of computation:

Computing the output:

b) State the running time of your algorithm in part a) in Θ-notation in terms of n (where n is the length
of S). You can assume that calls of f take unit time.

c) Use DP table from part a) to e�ciently �nd a sequence of nouns in the case when such a sequence
exists. More precisely, provide an algorithm that takes as input a string S and a DP table from part a)
and either splits S by spaces so that each string surrounded by spaces is a noun in a target language,
or outputs false if it’s not possible to split S in this way. If there are more than one possibility to
split S in such a way, your algorithm can output any of these possibilities.

For example, if the input is
kuzdrabokrgostakdoshes

and the nouns of the language are {bokr, bokrgos, doshes, drabok, gostak, kuz, kuzdra, takdos}, then
your algorithm should output

kuzdra bokr gostak doshes

Hint: Follow your answer back through your DP table (Rückverfolgen).

d) State the running time of your algorithm in part c) in Θ-notation in terms of n (where n is the length
of S). You can assume that calls of f take unit time.

3


